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1. Outline, Notation

To begin, here is a very brief and rough outline of what the course intends to cover.
It will focus on shifts of finite type, with an eye toward the problem of classifying shifts
of finite type up to topological conjugacy (usually called the Classification Problem).

Date: December 2018.
1
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At forest’s edge Basic things about subshifts, morphisms of symbolic systems, ba-
sic things about shifts of finite type including matrix presentations, Perron-Frobenius
theorem, entropy, zeta functions.

Into the forest Strong shift equivalence, Williams’ Theorem, shift equivalence, Williams’
Problem. Dimension groups, and algebraic invariants.

The deep forest Wagoner’s spaces, the triangle identities, positive cocycles, poly-
nomial matrix land, the construction of the obstruction map Φn taking values in
K2(Z[t]/(tn) and basic properties about K2.

1.1. Notation. A pair (X, f) denotes a space together with a self-map f : X → X,
which is always assumed to be continuous. Almost always, we will also assume f is a
homeomorphism. If A ⊂ X is f -invariant, we let (A, f) denote (A, f |A). The f -orbit
of a point x ∈ X is the set {fn(x) | n ∈ Z} and is denoted Of (x).

By a map between systems (X, f)
h→ (Y, g) we mean a continuous map h : X → Y

such that hf = gh. A factor map π : (X, f)→ (Y, g) is a map such that π : X → Y is

surjective, and a topological conjugacy (usually just conjugacy) is a map X, f)
h→ (Y, g)

such that h is a homeomorphism.

2. Subshifts, SFT’s, examples

Let A denote a finite collection of symbols (i.e. an alphabet). Let An denote the set
of all strings of length n over A, and let A∗ denote the set of all finite strings formed
from elements of A. We denote the length of a word w ∈ A∗ by |w|.

Formally, the space AZ consists of all functions Z → A. However, we can identify
AZ with

∏
n∈Z
A, which I find easier to think of, and consider elements x ∈

∏
n∈Z
A as

bi-infinite strings of symbols from A. I will let xi denote the ith component of a
point x (so xi ∈ A). Given k ∈ Z and i ≥ 0, we let x[k,k+i] denote the finite string
xkxk+1 · · ·xk+i in A∗.

With the product topology (using the discrete topology on A), the space
∏
n∈Z
A is

compact. We can also make
∏
n∈Z
A into a metric space by defining

d(x, y) = inf{ 1

2i
| i an integer such that xj = yj for all |j| ≤ i}
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. The topology induced by this metric coincides with the product topology.

Exercise: Verify this is actually a metric on
∏
n∈Z
A, and that the topology induced

by it coincides with the product topology.

Given a word w = a0a1 . . . ai ∈ A∗, there are associated cylinder sets Ck
w ⊂

∏
n∈Z
A

defined by

Ck
w = {x ∈

∏
n∈Z

A | x[k,k+i] = w}.

I will often refer to the cylinder set associated to w, by which I will mean C0
w, and

denote this more simply by Cw.

The space
∏
n∈Z
A is homeomorphic to the Cantor set: it is compact, totally discon-

nected (the connected components are points), and perfect (has no isolated points).

Exercise: Show that the collection of cylinder sets form a basis for the topology
on
∏
n∈Z
A, and that

∏
n∈Z
A is a Cantor set.

The shift map σ :
∏
n∈Z
A →

∏
n∈Z
A is defined by σ(x)i = xi+1; one can think of σ as

taking a bi-infinite string and shifting it left one unit. The map σ is a homeomorphism.

The fundamental object of study in symbolic dynamics is that of a subshift.

Definition 1. A subshift consists of the pair (X, σ), where X ⊂
∏
n∈Z
A is a closed

σ-invariant subset.

Sidequest: A system (X, f) is called expansive if there exists ε > 0 such that, for
x 6= y in X, sup d(fnx, fny) > ε. Show that a system (X, f) is topologically conjugate
to a subshift if and only if X is totally disconnected and (X, f) is expansive.

Given a subshift X ⊂
∏
n∈Z
A, we say a word w ∈ A∗ is X-admissible if Cw ⊂ X.

We define the language of X, denoted L(X), to be the subset of A∗ consisting of all
X-admissible words, and let Ln(X) = L(X)∩An denote the set of X-admissible words
of length n.

A word w is X-forbidden if it is not contained in the language of X. One way
to define a subshift is to stipulate the set of forbidden words. Given a set of words
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F ⊂ A∗, define the subshift X(F) to be the subset of
∏
n∈Z
A whose set of forbidden

words is precisely F .
Exercise: Show that a subset X ⊂

∏
n∈Z
A is a subshift if and only if there exists a

countable set F of forbidden words such that X = X(F).

The case X = A = {0, 1, . . . , n− 1} coincides with X(∅), and is called the full shift
(on n symbols).

Here is a rather cheap way to construct many examples of subshifts. Let x ∈
∏
n∈Z
A,

and let X(x) = Of (x). One can check that this is σ-invariant, and obviously closed, so
is a subshift. When the point x is recurrent (define), the orbit closure X(x) is minimal
(exercise).

Example 2. Let A = {0, 1}, and let x ∈
∏
n∈Z
A denote the point constructed iteratively

as follows: (define Thue-Morse point).

A fundamental class of subshifts are the subshifts of finite type, obtained by restrict-
ing only a finite set of words.

Definition 3. A subshift X ⊂
∏
n∈Z
A is called a subshift of finite type (or usually just

a shift of finite type) if there exists a finite set of words F such that X = X(F).

Some examples (and non-examples):

(1) The full shift is a shift of finite type, corresponding to F = ∅.

(2) When F = {11}, X(F) is a shift of finite type called the golden mean shift.

(3) Let F = {102n+11 | n ≥ 0}. The subshift X(F) consists of all sequences such
that between any two 1’s there are an even number of 0’s. X(F) is not a shift
of finite type.

Exercise: Show the even shift is not a shift of finite type.

3. Morphisms, higher block presentations

We naturally want to consider maps between subshifts. As one might guess, the
maps should really be maps of pairs (X1, σ1)→ (X2, σ2), i.e. maps of subshifts which
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intertwine the shift maps. Thus we define a morphism between subshifts f : (X1, σ1)→
(X2, σ2) to be a continuous map f : X1 → X2 such that fσ1 = σ2f . The following re-
sult, due to Curtis, Hedlund, and Lyndon gives a symbolic interpretation of a morphism
of subshifts.

Given alphabets A,B, an (m,n)-block code is a map α : Am+n+1 → B for some
m,n ≥ 0. An r-block code is a map α : A2r+1 → B. A block code α induces a
continuous map fα : AZ → BZ by defining

(1) fα(x)i = α(xi−m . . . xi . . . xi+n).

Note that fα satisfies fασ = σfα. It follows that for any subshift X ⊂
∏
n∈Z
A and block

code α, the map fα|X is a morphism between X and its image. A continuous map fα
induced by a block code α is often called a sliding block code.

Theorem 4. Any morphism of subshifts f : (X, σX) → (Y, σY ) is induced by a block
code. In other words, given f : (X, σX) → (Y, σY ) there exists a block code α(f) such
that f = fα(f).

Examples:

(1) Define a 2-block code on the 2-shift by α(x0x1) = x0+x1 mod2. Then fα : {0, 1}Z →
{0, 1}Z is onto, and hence a factor map, but not a conjugacy.

(2) Consider the 0-block code β : {0, 1, 2} → {a, b} defined by

β :


0 7→ a

1 7→ a

2 7→ b.

The induced map fβ : {0, 1, 2}Z → {a, b}Z is a factor map taking the full 3-shift
onto the full 2-shift.

(3) The 2-block code γ defined by γ(00) = 1, γ(01) = 0, γ(11) = 0 induces a con-
tinuous map fγ : Xgolden mean → {0, 1}Z.

Exercise: Show that the image of fγ is the even shift defined in Example ??.

(4) Consider the shift of finite type Y defined on A = {a, b, c, d, e, f} whose set of
allowable two-letter words is the following: aa, ab, bc, cd, ce, cf, dc, ee, ef, fa, fb.
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There is a 1-block code

δ :



a 7→ 0

b 7→ 0

c 7→ 1

d 7→ 0

e 7→ 1

f 7→ 0

inducing a continuous map fδ : Y → {0, 1}Z.

Exercise: Show that fδ induces a topological conjugacy between Y and
the full 2-shift, and find a block code inducing the inverse map.

The last example shows that, in general, it is far from clear when a given block code
induces a topological conjugacy.

3.1. Higher Block Presentations. It is sometimes convenient to recode a shift using
its admissible words of length n. To write this down, consider a subshiftX ⊂

∏
n∈Z
A. For

any n ∈ N there is a block code Φn : X → Ln(X)Z given by Φ(x)i = xixi+1 . . . xi+n−1.
The image of X under Φn is called the n-block presentation of X. By an higher block
presentation of X we mean an n-block presentation of X for some n ≥ 1.

Exercise: Show that for any subshift X ⊂
∏
n∈Z
A, a higher block presentation of

X is conjugate to X.
Exercise: Find a presentation (with forbidden words) of the 2-block presentation

of the golden mean shift.

4. Graph and matrix presentations of SFT’s

We now focus on shifts of finite type.

Definition 5. An SFT (X, σX) is called M-step if it can be presented using a set of
forbidden words each of whose length is M + 1.

Of course, a 0-step SFT is just a full shift. The following gives our first characteri-
zation of when a subshift is a shift of finite type.

Proposition 6. A subshift X is an M-step SFT if and only if it satisfies the following
property: if uv, vw ∈ L(X) and |v| ≥M , then uvw ∈ L(X).
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Exercise: Prove the proposition.

Proposition 7. If X and Y are conjugate subshifts and Y is an SFT then X is an
SFT.

Proof. Let α : X → Y be a conjugacy induced by a block code Φα and let Φα−1 be a
block code inducing α−1. We can assume both Φα and Φα−1 have range r. The previous
proposition gives N ∈ N such that if two Y -admissible words overlap by at least N
then they can be glued along their overlap to form a new Y -admissible word. Then
setting M = N + 4r, one can check that X satisfies the overlap gluing condition with
length M . �

Exercise: Fill in the rest of the details for the proof.

Note that Example ?? shows that SFT’s are not closed under factors. We’ll revisit
this problem later.

4.1. Graph presentations. Given an M -step SFT (X, σX), we can always recode
using a higher block presentation to get a 2-step SFT over a possibly (and usually)
larger alphabet. While this may seem like a rather useless procedure, there is an
alternative way to carry this out, using labeled directed graphs, which is extremely
profitable. In a way, this is the key step which underlies much of our investigation
into SFT’s and gives the connection between SFT’s and algebra+positivity. In short,
SFT’s are associated to labeled directed graphs through the edge shift construction,
and labeled directed graphs are linked with non-negative matrices through adjacency
matrices.

4.2. Z+-matrices, directed graphs, and edge shifts: A finite directed graph Γ
consists of a finite collection of vertices (often referred to as states) V (Γ) together with
a finite collection of edges E(Γ). Each edge e ∈ E(Γ) has an initial vertex and a termi-
nal vertex. Multiple edges between two vertices are allowed, as are self loops. Often,
we will assume our graph Γ also comes with a chosen labeling of the vertices.

Let Γ be a directed graph with k labeled vertices. Suppose there are e(i, j) edges
between vertex i and vertex j. Define the k× k adjacency matrix AΓ by Ai,j = e(i, j).

Exercise: Show that if Γ is a graph and A1 and A2 are adjacency matrices as-
sociated to Γ using two labelings of vertices, then A1 and A2 are conjugate via a
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permutation matrix.

On the other hand, given a k×k matrix A over Z+, the directed graph ΓA associated
to A has k vertices indexed by the rows (equivalently columns) of A and Aij edges from
vertex i to vertex j.

These constructions are inverses of each other, in the following sense:

ΓAΓ
= Γ, AΓA

= A.

**picture**

Given a graph Γ, we may associate an edge shift SFT (XΓ, σΓ) as follows. Label each
edge in Γ, giving an alphabet AΓ, and define the 1-step SFT over AΓ

XΓ = {x | terminal vertex of xi = initial vertex of xi+1}.

Like before, we have defined XΓ by stipulating the set of admissible length two words.

Definition 8. Given a matrix A over Z+ we denote by (XA, σA) the edge shift of finite
type associated to the graph Γ(A).

Examples:

(1) The matrix A = (n) presents the full shift on n symbols.

(2) The graph associated to the matrix B =

(
1 1
1 0

)
looks like:

Exercise: Show that, for B as in the last example, (XB, σB) is simply the 2-block
presentation of the golden mean shift, and hence is conjugate to it.

4.3. Vertex Shift. Suppose A over Z+ is actually over ZO = {0, 1}. Instead of the
associated edge shift defined above, we could instead consider the vertex shift over the
alphabet V ert(ΓA) of vertices of ΓA

Xvert
A = {x ∈

∏
n∈Z

A | for all i there is an edge from xi to xi+1}.

For example, the vertex shift associated to the k × k matrix of all 1’s presents the
full k-shift. This example shows how much more economical Z+ presentations are than
ZO presentations.

Exercise: Let A be a ZO matrix. Show that (Xvert
A , σ) and (XA, σA) are conjugate.
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Theorem 9. For any SFT (X, σX) there is a graph Γ(X) such that (X, σX) is conjugate
to (XΓ, σΓ).

Proof. If (X, σX) is k-step, define a graph Γ as follows: the vertex set is given by
Bk(X), the set of allowed k-blocks, and if I = a1 . . . ak, J = b1 . . . bk are two vertices
in Γ, then we draw an edge from I to J (labeled a1 . . . akbk) if a2 . . . ak = b1 . . . bk−1.
Then a quick check shows that (XΓ, σΓ) is conjugate to the k + 1-step presentation of
(X, σX). �

We will work almost exclusively with edge shifts. The reason is the incredible utility
provided by the association of the edge shift with its matrix. For example, we have
the following.

prop:pathcount Proposition 10. Let A be a k× k Z+-matrix, and let m ≥ 0. The number of paths in
Γ(A) of length m from vertex I to vertex J is given by AmI,J .

Proof. Exercise. �

Some definitions:

(1) Graph side:
(a) A vertex i is stranded if either no edges leave i or no edges end at i. We

call a graph essential if it has no stranded vertices.
(b) A graph Γ is irreducible (or sometimes strongly connected if for every pair

of vertices i, j there exists a path in Γ starting at i and ending at j.
(2) Matrix side:
(3) A Z+-matrix A is essential if it has no row or column consisting of all zeros.
(4) A k × k Z+-matrix A is irreducible if for any i, j ≤ k there exists n(i, j) such

that Ani,j > 0.

It is straightforward to check now that the a graph Γ is essential (resp. irreducible)
if and only if the adjacency matrix A(Γ) is essential (resp. irreducible).

Disclaimer: From here on out, unless otherwise stated, graphs are assumed to be
essential, as are Z+-matrices.

5. Transitivity, Mixing, Irreducibility and Primitivity

Recall a system (X, f) is topologically transitive if for any pair of (non-empty) open
sets U, V ⊂ X there exists n > 0 such that fn(U) ∩ V 6= ∅.

Exercise: Show that if (X, f) is compact metric and topologically transitive, then
it has a dense (forward) orbit. Show that, if one assumes X has no isolated points and
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(X, f) has a dense forward orbit, then (X, f) is topologically transitive.

By the previous exercise, an SFT (X, σX) is topologically transitive if and only if it
has a dense forward orbit. In the symbolic setting, often the term irreducible is used
instead of topologically transitive.

Definition 11. A subshift (X, σX) is irreducible if for any pair of words u, v ∈ L(X)
there exists w ∈ L(X) such that uwv ∈ L(X).

The following shows how a dynamical property like irreducibility corresponds to the
corresponding property of the associated presenting matrix.

Proposition 12. For an edge SFT (XA, σA), the following are equivalent:

(1) (XA, σA) is topologically transitive.
(2) (XA, σA) is irreducible.
(3) A is irreducible.

Proof. �

Exercise: Show for an irreducible SFT that the periodic points are dense.

Recall a system (X, f) is topologically mixing if for any pair of (non-empty) open
sets U, V ⊂ X there exists N ∈ N such that fn(U) ∩ V 6= ∅ for all n ≥ N . In subshift
land this condition takes the following form, and is often referred to as just mixing.

Definition 13. A subshift (X, σX) is mixing if for every pair u, v ∈ L(X) there exists
N ∈ N such that for each n ≥ N there exists a word w ∈ Ln(X) such that uwv ∈ L(X).

The matrix condition corresponding to a mixing SFT is known as primitivity.

Definition 14. A Z+-matrix A is primitive if there exists n ≥ 1 such that An > 0.

Proposition 15. An edge SFT (XA, σA) is mixing if and only if A is primitive.

Proof. �

Often (though sometimes with some work), results about irreducible SFT’s reduce to
the mixing case. Irreducible systems have cyclic permuted mixing pieces and a notion
of period governing the order of this cyclic structure (see LM). I won’t discuss this
much more, and will for the most part stay in the mixing case.

6. Interlude

So now we know what a shift of type is, and how each such shift can be presented
(up to conjugacy) by a Z+-matrix. One of our main goals is to get a sense of what is
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known about the following question:

Classification Problem: When are two shifts of finite type topologically conju-
gate?

Toward this end, we’ll start by surveying some useful conjugacy invariants. Apart
from being useful for distinguishing SFT’s, often the invariants are important in their
own right: they contain important information about an SFT, and are very often
computable. This last point is especially interesting; later on we will give a complete
matrix invariant of the conjugacy class of an SFT, but its not clear whether it is more
computable or not. A more precise case of the Classification Problem then could be
stated as follows:

Decidability of conjugacy of SFT’s: Is there an algorithm to determine when
two SFT’s are topologically conjugate?

We’ll come back to this later. For now, we’ll start with by showing how to compute
an invariant, topological entropy, which is also of tremendous dynamical importance
in its own right.

7. Topologicaly entropy of an SFT

For the general definition of topological entropy of a system (X, f), see ??. Exercise
6.3.8 in LM shows that, for subshifts, the following definition is equivalent.

Definition 16. For a subshift (X, σX), the (topological) entropy is defined to be

h(X) = lim
n→∞

1

n
log |Ln(X)|.

Note that sometimes log2 is used instead of log. I guess for historical reasons. The
definition is designed around the idea that the numbers |Ln(X)| grow like eh·n for some
h (h of course turns out to be the entropy).

Example: For the full shift on k symbols (Xk, σk) we have |Ln(X)| = kn, so
h(σk) = log k.

To compute the topological entropy of a shift of finite type, we’ll need the Perron-
Frobenius Theorem.

7.1. Perron-Frobenius Theorem. The Perron-Frobenius Theorem is a key tool in
the theory of non-negative matrices. The theorem has two parts to it: the primitive
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case (originally due to Perron), and the irreducible case (proved later by Frobenius).
I’ll give here a proof of the primitive case, which is used to prove the irreducible case.
The proof here is based on one found by Brin in the 90’s (though the idea of using
Brouwer’s goes back before that), and it could be very similar to older ones (I do not
know).

Recall the spectral radius ρ(A) of a matrix A is the maximum of the moduli of the
eigenvalues of A.

Theorem 17 (Perron). Let A be a primitive matrix over Z+ with spectral radius λ.
Then λ is a simple eigenvalue of A, and λ > |µ| for any other eigenvalue µ of A.
Moreover, any eigenvector for λ has strictly positive values.

Before beginning the proof, we need a quick lemma.

Lemma 18. Let T be a linear map of a finite dimensional vector space V , and P be a
polyhedron such that the origin lies in the interior of P . Suppose a power of T maps
P into its interior. Then ρ(T ) < 1.

Proof. It’s not hard to see that ρ(T ) ≤ 1. Suppose then that T has an eigenvector v
with eigenvalue λ satisfying |λ| = 1. If λ = ±1 then a power of T fixes a point on
the boundary of P , which is impossible, so we may suppose λ 6= ±1. Then there is
a two-dimensional subspace W on which T acts by a rotation, and we can choose a
point x ∈ W which lies on the boundary of P . Since T acts by a rotation on W , x is a
limit point of the sequence T nx. But this is also impossible, since there is a power of
T which maps P into its interior. �

Proof of the Theorem. Suppose A is n× n, and consider the unit simplex

∆n = {x ∈ Rn+1 |
∑
i

xi = 1 and xi ≥ 0 for all i}

in Rn+1. Define a map TA : ∆n → ∆n by x 7→ Ax
||Ax|| . Since ∆n is a topological disk, fixed

point theory (e.g. Brouwer’s) implies the map TA has a fixed point v ∈ ∆n. The vector
v is then an eigenvector for A, and since Ak is positive for some k (by primitivity), v
must be strictly positive. Letting λ denote the eigenvalue corresponding to v, it follows
that λ is also positive.

Let S = diag(v) be the diagonal matrix whose i, ith entry is given by vi (the ith
entry of v), and consider

B =
1

λ
S−1AS.

Note that B is also primitive, and that B has the vector of all 1’s as an eigenvector
with eigenvalue 1. Since λB and A are conjugate they have the same spectrum, so it
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suffices to show that 1 is a simple eigenvalue for B such that |µ| < 1 for any other
eigenvalue of B.

Consider TBtr : Rn+1 → Rn+1 given by TBtrx = Btrx. The map TBtr leaves ∆n

invariant, and so again using a fixed point theorem, must have a fixed point. Since Btr

is also primitive, a power of TBtr actually maps ∆n into its interior, so there must in
fact be a fixed point, say w, in the interior of ∆n. Consider the polyhedron P = ∆n−w
which contains the origin in its interior. A power of TBtr maps P into its interior, so
by the lemma the restriction of TBtr to spanP has spectral radius less than one. Since
spanP is a codimension one TBtr subspace, this completes the proof. �

Theorem 19 (Frobenius). Suppose A be an irreducible Z+-matrix. Then A has a
strictly positive eigenvector v with corresponding eigenvalue λ such that λ = ρ(A).
Any other nonnegative eigenvector of A is a multiple of v, and there exists p ≥ 1 such
that the set of eigenvalues of A whose modulus is λ is precisely {λ, λζ i, . . . , λζp−1}
where ζ is a primitive pth root of unity.

Proof. Use the cyclic structure and the primitive case. See ?? for details. �

For an irreducible or primitive matrix A, we let λA denote the Perron eigenvalue.

Now we can compute the entropy of an irreducible edge shift of finite type. Since
any irreducible SFT is conjugate to an edge SFT, this lets us compute the entropy of
any irreducible SFT. For the extension to the reducible case, see LM.

Theorem 20. Let A be a k × k irreducible Z+-matrix. Then h(σA) = log λA.

Proof. By Proposition
prop:pathcount
10, Ln(XA) =

∑k
i,j=1 A

n
i,,j, so we want to understand the growth

of
∑k

i,j=1A
n
i,,j. By Perron-Frobenius, A has a positive eigenvector v, and we let a =

min{vi}, b = max{vi}. A simple calculation shows that

k∑
j=1

Ani,jvj = λnAvi.

Then for any 1 ≤ i ≤ k we have

aλnA ≤ viλ
n
A =

k∑
j=1

Ani,jvj ≤ b

k∑
j=1

Ani,j ≤ b

k∑
i,j=1

Ani,j

so

a

b
λnA ≤

k∑
i,j=1

Ani,j.



14 SYMBOLIC DYNAMICS AND SUBSHIFTS OF FINITE TYPE

Similarly, we have

a

k∑
j=1

Ani,j ≤
k∑
j=1

Ani,jvj = λnAvi ≤ bλnA

and summing this over i gives

a

k∑
i,j=1

Ani,j ≤
k∑
i=1

bλnA = kbλnA

so that
k∑

i,j=1

Ani,j ≤
kb

a
λnA.

Altogether we have

a

b
λnA ≤

k∑
i,j=1

Ani,j ≤
kb

a
λnA.

Applying log, dividing by n and taking n→∞ gives h(σA) = log λA. �

Example: The golden mean shift is presented by the matrix A =

(
1 1
1 0

)
, so the

entropy of the golden mean shift is log φ where φ = 1+
√

5
2

is the golden mean.

For irreducible SFT’s, the entropy also counts the asymptotic growth rate of the
number of periodic points. This phenomenon occurs for more general ‘irreducible’
systems (i.e. Smale systems?). Recall for a system (X, f), pn(X) denotes the set of
periodic points of least period n.

Theorem 21. If (X, σX) is a subshift then

lim sup
n→∞

1

n
log |pn(X)| ≤ h(X).

If (X, σX) is a shift of finite type then

lim sup
n→∞

1

n
log |pn(X)| = h(X).

Proof. Exercise - see LM. �
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8. Periodic Points and the zeta function

Exercise: Show that if (X, f) is expansive, then for |Pn(f)| is finite for any n ∈ N.

Definition 22. Suppose (X, f) is a system such that |Pn(f)| is finite for every n ∈ N.
The zeta function (sometimes called the Artin-Mazur zeta function) associated to (X, f)
is defined by

ζf (t) = exp

(
∞∑
n=1

|pn(f)|
n

tn

)
.

The zeta function, by definition, encodes the data of the periodic points of the system
(X, f). Indeed, the sequence |Pn(f)| and ζf (t) determine each other, as shown by the
following exercise.
Exercise: Suppose ζf (t) has radius of convergence R > 0. Show that

dn

dtn
log ζf (t)|t=0 = (n− 1)!|Pn(f)|.

Why not encode the periodic data more simply, say with the generating function∑∞
n=1 |pn(f)|tn? There are advantages to using ζf (t), a few of which we’ll see. For

example, we have the Euler product formula.

Proposition 23 (Euler Product Formula). Let (X, f) be a system such that |Pf | is
finite for all n ∈ N, and let Q(f) denote the set of periodic orbits of (X, f). For a
periodic orbit O ∈ Q(f) let |O| denote the length of the orbit. Then

ζf (t) =
∏
O∈Q

(
1− t|O|

)−1
.

Proof. Exercise. �

For shifts of finite type, there is a remarkable formula for the zeta function. This
formula, originally due to Bowen and Lanford, led to further results showing closed
forms for the zeta functions of certain systems (see Manning). As one might guess, in
the shift of finite type case, the heart of it is in using

prop:pathcount
10.

For a matrix A over Z+, define polynomials

chA(t) = det(tI − A)

χA(t) = det(I − tA).
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Lemma 24. Suppose A is a Z+-matrix and chA(t) is degree d. Then

td · chA(t−1) = χA(t).

Furthermore, if {λi} is the collection of non-zero eigenvalues of A, then

χA(t) =
∏
i

(1− λit).

Proof. Exercise. �

Theorem 25. Let A be a k × k Z+-matrix and (XA, σA) the associated shift of finite
type. Then

ζσA(t) =
1

χA(t)
=

1

det(I − tA)
.

Proof. This again relies on pretty much just
prop:pathcount
10 and basic linear algebra. Let {λi}ki=1

denote the set of eigenvalues of A. We know by
prop:pathcount
10 that for any n ≥ 1, |Pn(σA)| = trAn.

Since

trAn =
k∑
i=1

λni

we have

ζσA(t) = exp

(
∞∑
n=1

trAn

n
tn

)
= exp

(
∞∑
n=1

∑k
i=1 λ

n
i

n
tn

)

= exp

(
k∑
i=1

∞∑
n=1

λni
n
tn

)
=

k∏
i=1

exp

(
∞∑
n=1

(λit)
n

n

)

=
k∏
i=1

1

1− λit
=

1

χA(t)

where the last equality comes from the lemma above. �

Given a matrix A, we denote the non-zero spectrum of A by sp×(A). So sp×(A) is
the collection of non-zero eigenvalues of A.

Proposition 26. Let A be a Z+-matrix. Any of the following items determines the
other two.

(1) {|Pn(σA)|}n≥1.
(2) ζσA(t).
(3) sp×(A).

Proof. Combine all the previous results. �
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Note in particular something kind of interesting: in terms of periodic data, the SFT
(XA, σA) does not care about the zero spectrum of A.

Note also that for an SFT (XA, σA), the zeta function ζσA(t) is an analytic function
on the open disc of radius 1

ρ(A)
centered at the origin.

Sidequest: What can the zeta function of a mixing SFT be? This is, by the above,
very related to the question of what the spectrum of a primitive integral matrix can be.
A set of necessary conditions were conjectured by Boyle and Handelman to be actually
sufficient, becoming known as the Spectral Conjecture. The spectral conjecture was
proved for many subrings of R by Boyle-Handelman in their Annals paper, and then
later settled in the Z case by Kim-Ormes-Roush. Thus, the possible zeta functions
are determined by this set of conditions, and can be found in the Kim-Ormes-Roush
paper.

9. Strong shift equivalence and Williams’ Theorem

Theorem 27. Let A,B be Z+-matrices. The shifts of finite type (XA, σA) and (XB, σB)
are topologically conjugate if and only if A and B are SSE-Z+.

To prove this, we’ll first do the “conjugacy =⇒ A∼SSE-Z+ B” direction, as it is
harder then the “A∼SSE-Z+ B =⇒ conjugacy” direction.

Proof that conjugacy =⇒ A∼SSE-Z+ B:

Proof.

Definition 28. Given a graph Γ, an out-splitting of Γ is a graph Γout obtained roughly
as follows:

We say Γ1 is an out-amalgamation of Γ2 if Γ2 is an out-splitting of Γ1.
Analogously, there are in-splittings, and in-amalgamations.
A conjugacy φ : (X, σX) → (Y, σY ) is a splitting (resp. amalgamation) if it is in-

duced by either an out-splitting or an in-splitting (resp. an in-amalgamation or an
in-amalgamation).

Lemma 29 (Decomposition Lemma). Any φ : (XA, σA) → (XB, σB) is a composition
of splittings and amalgamations.

Proof. Sketch: first recode (XA, σA) to a higher block presentation so that the induced
φ′ on this higher block presentation becomes a 0-block code. The conjugacies induced
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by passing to a higher block presentation are a composition of splittings, and the
resulting 0-block code φ′ is also a splitting. One now employs the following lemma.

Lemma 30. Suppose α : (X, σX)→ (Y, σY ) is given by a 0-block code, and the inverse
α−1 is given by a block code of range (m,n) with n ≥ 1. Then there are outsplittings
(X ′, σX′), (Y

′, σY ′) and a diagram

(2) (X, σX)
∼= //

α

��

(X ′, σ′X)

β

��
(Y, σY ) (Y ′, σ′Y )∼=

oo

such that β is a 0-block code conjugacy whose inverse β−1 is a block code of range
(m,n− 1).

Proof. See Lemma 7.1.3 in LM. �

Continuing the proof, we repeatedly apply the lemma above to replace φ′ with φ′1
which is a 0-block code conjugacy whose inverse is a block code of range (m, 0). Then
we apply the lemma, but now working on the dual graph to replace φ′1 with φ′2 which
is a 0-block code conjugacy whose inverse is also a 0-block code, which finishes the
proof. �

Lemma 31. Suppose Γ1 → Γ2 is an outsplitting. Then A(Γ1) = RS,A(Γ2) = SR for
some matrices Z+-matrices R, S.

Proof. Consider the example given above. �

This finishes the proof of this direction. �

Proof that A∼SSE-Z+ B =⇒ conjugacy:
As promised, this direction is easier. It is enough to suppose A = RS,B = SR for

some R, S over Z+.

10. Shift equivalence and the dimension group

Consider the matrices A =

(
1 2
2 3

)
and B =

(
1 1
4 3

)
. Are the SFT’s (XA, σA) and

(XB, σB) conjugate? A quick calculation shows that χA(t) = χB(t), so ζσA(t) = ζσB(t),
and it follows then from the previous sections that they have the same entropy and
periodic point counts. Nevertheless, they are not conjugate, and to see this, we’ll use
a new invariant which we introduce now.
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This invariant has a couple of different forms, and we’ll start by introducing two of
these forms, and then showing that they are the same.

Definition 32. Square matrices A,B over Z+ are shift equivalent over Z+ (SE-Z+),
denoted A∼SE-Z+ B, if there exist Z+ matrices R, S (not necessarily square) and l ∈ N
such that all of the following hold:

Al = RS, Bl = SR

AR = RB, BS = SA.

Exercise: Show that SE-Z+ is an equivalence relation on square matrices over Z+.

Obviously matrices which are SSE-Z+ are SE-Z+, so we get the following.

Proposition 33. If A,B are matrices over Z+ such that (XA, σA) and (XB, σB) are
conjugate, then A∼SE-Z+ B.

There are a couple of immediate questions one might ask.

(1) If A∼SE-Z+ B, what is the relationship between (XA, σA) and (XB, σB)?
(2) If A∼SE-Z+ B, is A∼SSE-Z+ B?
(3) Is SE-Z+ at least more understandable, and maybe computable, then SSE-Z+?
(4) Along the lines (3), is there a more ‘familiar’ algebraic interpretation of the

SE-Z+-equivalence class of a matrix A?

We’ll answer the first of these of these relatively soon, and the third we’ll address in
time. The fourth is our immediate goal. The second question was a long open problem
in the field, which we restate for emphasis.

Williams’ Problem: If A and B are square Z+ matrices and A∼SE-Z+ B, are
A∼SSE-Z+ B?

The answer to this, it turns out, is no. We’ll spend a fair amount of time exploring
how this came to be answered.

To answer the first question above, we consider the following relation on systems.

Definition 34. Systems (X, f) and (Y, g) are eventually conjugate if there exists some
N ∈ N such that (X, fn) and (Y, gn) are conjugate for all n ≥ N .

Theorem 35. For matrices A,B over Z+, the SFT’s (XA, σA) and (XB, σB) are even-
tually conjugate if and only if A∼SE-Z+ B.
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10.1. Dimension Groups. Knowing the SE-Z+-equivalence class of a matrix A turns
out to be equivalent to knowing the isomorphism class of a certain ordered Z[t, t−1]-
module built from A. This object, known as the ordered dimension module associated
to A, plays an important role in the study of SFT’s overall. We will see later that the
underlying abelian group (called the dimension group built from A) plays the role of a
homology group one can associate to the SFT (XA, σA).

The dimension module has many incarnations. We’ll begin with the matrix presen-
tation, since it is usually most amenable to calculation. We note again two things:

(1) Our matrices act on row vectors
(2) We abuse notation and let A also denote the linear map associated to the matrix

A (oh goodness).

Let A be k × k over Z. The eventual range of A is

ER(A) = ∩∞i=1QkAi.

This is an A-invariant rational subspace of Qk on which A acts invertibly. We define
the dimension group associated to A to be the additive abelian group

GA = {v ∈ ER(A) | vAk ∈ Zk for some k ≥ 1}.
Since A acts invertibly on ER(A), there is an automorphism (of abelian groups)

(3)
δA : GA → GA
δA : v 7→ vA.

It is important not just to record the abelian group GA, but also the induced action
of δA. We make GA into a (right) Z[t, t−1]-module then by defining v · t = δ−1

A (v) (the
reason for t acting by δ−1

A and not δA will be more clear later on).

Definition 36. The dimension module associated to A is defined to be the Z[t, t−1]-
module GA.

One can avoid the module language by just working with pairs (GA, δA), but it turns
out to be useful (and more ‘functorial’) to instead work in the language of modules.
In fact, this phenomenon of passing from endomorphisms (in this case the action of
A) to an associated Z[t]-module is part of a larger framework, which we’ll explore later.

The matrices we are concerned with are not just integral, but over Z+. In this
case, there is an additional bit of structure we can put on GA, which is actually quite
important. Given A over Z+, the positive cone is the semigroup contained in GA defined
by

G+
A = {v ∈ GA | vAk ∈ Zk+ for some k ≥ 1}.
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We call the pair (GA,G+
A ) the ordered dimension module associated to A. A morphism

between ordered dimension modules (GA,G+
A ) and (GB,G+

B ) is a Z[t, t−1]-module map
Ψ: GA → GB such that Ψ(G+

A ) ⊂ G+
B . Note that δA is actually an automorphism of

ordered dimension modules, since G+
A is invariant under δA.

The connection between the dimension modules and shift equivalence is given by the
following.

Theorem 37. For any Z+-matrices A and B, each of the following hold:

(1) A∼SE-Z+ B if and only if the ordered dimension modules (GA,G+
A ) and (GB,G+

B )
are isomorphic.

(2) A∼SE-Z B if and only if the dimension modules GA and GB are isomorphic.

Proof. Suppose the SE-Z+ is implemented by R, S, and consider the map ER(A) →
ER(B) given by v 7→ vR. �

10.2. Shift equivalence and the Jordan form away from zero. It is not hard to
check now that if A∼SE-Z B, then A and B have the same Jordan form (over Q) away
from zero, i.e. ignoring the set of zero eigenvalues (equivalently, consider their actions
on their respective eventual ranges). An interesting question is, for a given Jordan
form away from zero, how many SE-Z classes refine it?

Theorem 38 (Boyle). There are only finitely many SE-Z classes with a given Jordan
form away from zero.

It will follow from the results in the next section that the same holds for primitive
matrices if one replaces Z in the above with Z+.

11. From SE-Z to SE-Z+

It is clear that A∼SE-Z+ B implies A∼SE-Z B. For primitive matrices, it turns
out the converse also holds. Put another way, in the primitive case, the positive cone
data of GA is redundant. This is an important result, and one of the first cases where
primitivity is very useful.

Theorem 39. Let A and B be primitive Z+-matrices. Then A∼SE-Z+ B if and only
if A∼SE-Z B.

Before proving this, we’ll record some lemmas. Both are actually interesting in their
own right. The first describes the limiting behavior of Ak when A is primitive. Then,
using this, we’ll show that in the primitive case, the order structure of GA is determined
by the Perron subspace.
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Lemma 40. Suppose A is primitive, let u be a positive left PF-eigenvector and v be a

positive right PF-eigenvector, chosen such that u · v = 1. Then
(

( 1
λA

)A
)n

converges to

the matrix vu.

Proof. The matrix ( 1
λA

)A fixes both u and v. If w is any (generalized) eigenvector for

α 6= λA, then ( 1
λA
A)nw → 0, likewise for row vectors. It follows that ( 1

λA
A)n converges

to a matrix P with the property that uP = u, Pv = v, and any non-Perron generalized
eigenvector of A is contained in the kernel of P . It is easy to check now that P must
be a projection onto the subspace spanv, and since uP = u and Pv = v, the only such
matrix is P = vu. �

Lemma 41. Suppose A is primitive and v is a right Perron eigenvector for A. If w is
any (row) vector, then wAk is positive for some k if and only if w · v > 0.

Proof. One direction is clear, since v has strictly positive entries. So suppose w · v > 0.
By the previous lemma, we can write

Ak = λkAvu+ λkA · error

where error→ 0 as k →∞. Thus

wAk = λkAwvu+ λkAw · error = λkA(wvu+ w · error) > 0

for large enough k. �

Proof of Theorem ?? One direction is trivial. Suppose then that A∼SE-Z B, using
matrices R, S over Z. Note that for any k ≥ 0, RBk and SAk also enact a shift
equivalence from A to B. We want to show that, for some k ≥ 0, RBk and SAk are
either both positive or both negative. Then use either RBk, SAk or −RBk,−SAk.

Suppose now that v is a right Perron eigenvector for A, so Av = λAv. Then

BSv = SAv = SλAv = λASv.

Since A∼SE-Z+ B, we know from ?? that A and B have the same non-zero spectrum, so
λA = λB. It follows then that Sv (or its negative) is a positive right Perron eigenvector
for B. Now for each 1 ≤ i ≤ r, we have

eiRw = eiRSv = eiA
lv = λlAvi > 0.

From Lemma ?? this implies, for each 1 ≤ i ≤ r, there exists k(i) such that eiRB
k is

positive, so choosing k large enough, we have that RBk is either eventually positive or
negative. Likewise for SAk. Finally, RBk and SAk must be the same sign, since

0 ≤ A2k+l = RSA2k = RBkSAk.

�
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We say two systems (X, f) and (Y, g) are eventually conjugate if there exists N ≥ 1
such that (X, fn) and (Y, gn) are conjugate for all n ≥ N .

Theorem 42. Suppose A and B are Z+-matrices. Then A∼SE-Z+ B if and only if the
SFT’s (XA, σA) and XB, σB) are eventually conjugate.

Proof. One direction is obvious: if A∼SE-Z+ B, then (XA, σA) and (XB, σB) are even-
tually conjugate. Suppose then that (XA, σ

n
A) and (XB, σB) are conjugate for all

n ≥ N . Then the dimension modules are isomorphic, and it is easy to check that
GAn , δnA = GA, δnA, so we really have an isomorphism

GA, δnA
Ψn−→ GB, δnB.

Consider αn = Ψ−1
n δBΨn. We know αnn = δnA, and we would like αn = δA for some

n ≥ N . We will use the lemma:

Lemma: Suppose matrices E,F are non-singular and satisfy En = F n. Suppose
also that when λ is an eigenvalue of E and µ is an eigenvalue of F , and λn = µn, then
λ = µ. Then E = F .

The proof of this lemma is a (fun) exercise.

Continuing the proof, choose m large enough such that for each pair of non-zero
eigenvalues λ, µ of A and B, either λ = µ or λm = µm (this is also an exercise). Note
specB = specαn. Then the lemma applied to δQA and αQ

m imply δQA = αQ
m. But this

implies δA = αm. �

11.1. Bowen-Franks and the polynomial presentation of GA. Still, are the ma-

trices A =

(
1 2
2 3

)
and B =

(
1 1
4 3

)
shift equivalent over Z+? Since they are both

primitive, it’s enough to determine whether they are SE-Z. It is possible to argue
directly that they are not. However, let’s use a different invariant to distinguish them.

Proposition 43. Let A be a k × k Z+ matrix, and consider the map

(4)
Z[t]k

I−tA−−−→ Z[t]k

v 7→ v · (I − tA).

The cokernel module coker(I − tA) is isomorphic (as a Z[t]-module) to GA.

Proof. Let δA,Q denote the extension of δA to ER(A). Consider the map of Z[t]-modules

π : Z[t]k → GA
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defined by

w0 + w1t+ · · ·+ wnt
n = w 7→ w0A

kδ−kA + w1A
kδ−kA δ−1

A + · · ·+ wnA
kδ−kA δ−nA .(5)

It is easy to check that π lands in GA. Furthermore, note that if w = v(I − tA), then
π(w) = 0, so π descends to a map π : coker(I−tA)→ GA. To see that π is onto, consider
v ∈ ER(A) such that vAj ∈ Zk. Then v = wAk for some w ∈ Qk, and wAk+j ∈ Zk.
Then a small calculation shows that wAk+jtj maps to wA2k+jδ−k−jA = wAk = v.

To show that π is injective, it is enough to show that if π(w) = 0 then w = u(I− tA)
for some u ∈ Z[t]. This is left as an exercise. �

The above proposition is part of a much larger idea, which is broadly contained in
the following picture:

Endomorphisms
over Z

Z[t]-modules

In fact, the place on the right should not be all of Z[t]-modules, but only special ones.
Which ones depends on how you want to study endomorphisms. For the study of shift
equivalence, the right hand side should really be the set of S-torsion Z[t]-modules of
projection dimension ≤ 1, where S is the set of polynomials with constant term 1.
We’ll say more about this later.

What about the positive cone G+
A in the polynomial setting? We’ll explore later, but

for now, we want to emphasize the following picture:

eqn:dimgrouppreseqn:dimgrouppres (6) 0→ Z[t]k
I−tA−−−→ Z[t]k → coker(I − tA)→ 0.

11.2. The Bowen-Franks group. Finally, let’s show that A =

(
1 2
2 3

)
and B =(

1 1
4 3

)
are not SE-Z.

Definition 44. Given a k× k A over Z+, the Bowen-Franks group associated to A is
the abelian group coker(I − A); that is, it is the cokernel of the map

Zk I−A−−→ Zk.

We won’t go into much detail at the moment about why this group has a name. For
now, we’ll just mention the following beautiful theorem.
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Theorem 45 (Parry-Sullivan,Bowen-Franks,Franks). Let A and B be irreducible Z+-
matrices with spectral radii > 1. Then (XA, σA) and (XB, σB) are flow equivalent if
and only if BF (A) = BF (B) and det(I − A) and det(I −B) have the same sign.

By definition, the Bowen-Franks group sits in the sequence

eqn:bfpreseqn:bfpres (7) Zn I−A−−→ Zn → BF (A).

The reason we write it this way is to contrast with the dimension module sequence (
eqn:dimgrouppres
6).

Using this point of view, the following becomes immediate.

Theorem 46. Suppose A and B are Z+-matrices. If A∼SE-Z B then BF (A) ∼=
BF (B).

Proof. Set t 7→ 1. �

Exercise: Consider A =

(
5 3
3 5

)
and B =

(
6 8
1 4

)
. Show that A and B have

the same Jordan form away from zero, and the same Bowen-Franks group, but are not
shift equivalent. (Hint: Consider the t 7→ −1 invariant.)

12. From SE-Z to SSE-Z.

It is clear that SSE-Z implies SE-Z. That the converse holds is originally due to
Williams, with an additional key piece later provided by Effros. Our argument here
uses the Effros idea, though presented in a different way. The presentation is meant to
emphasize a key aspect of the relationship between SE and SSE in a general framework:
the structure of nilpotent matrices over the ring in question. The argument here works
more generally, but for the time being, we state it over Z.

Definition 47. Let A be over Z.

(1) A right zero extension of A is a matrix of the form

(
A U
0 0

)
where U is some

rectangular matrix.

(2) A left zero extension of A is a matrix of the form

(
0 U
0 A

)
where U is some

rectangular matrix.

By a zero extension of A we mean either a right or left zero extension.

Definition 48. Let A be over Z.

(1) A right nilpotent extension of A is a matrix of the form

(
A U
0 N

)
where U is

some rectangular matrix and N is a square nilpotent matrix.



26 SYMBOLIC DYNAMICS AND SUBSHIFTS OF FINITE TYPE

(2) A left nilpotent extension of A is a matrix of the form

(
N U
0 A

)
where U is

some rectangular matrix and N is a square nilpotent matrix.

By a nilpotent extension of A we mean either a right or left nilpotent extension.

Recall two n× n matrices A,B over Z are said to be isomorphic if there exists U ∈
GLn(Z) such that U−1AU = B. We write A∼iso-Z B when A and B are isomorphic,
and note that this is an equivalence relation.

Proposition 49. (1) Strong shift equivalence over Z is the equivalence relation
generated by the following relations:
(a) A∼iso-Z B.
(b) A ∼ B where B is any zero extension of A.

(2) Shift equivalence over Z is the equivalence relation generated by the following
relations:
(a) A∼iso-Z B.
(b) A ∼ B where B is any nilpotent extension of A.

Proof. To be added. �

Lemma 50. Let N be a nilpotent matrix over Z. Then N is isomorphic over Z to a
strictly upper triangular matrix.

Theorem 51. If A∼SE-Z B then A∼SSE-Z B.

Proof. By the proposition above, it is enough to show that A is strong shift equivalent
over Z to any nilpotent extension of it. We’ll show this for a right nilpotent extension,

as the other case is analogous. Thus consider a right nilpotent extension

(
A U
0 N

)
where N is nilpotent. Using the lemma above, choose V such that V NV −1 = N1 is

strictly upper triangular. Then, using

(
1 0
0 V

)
, we have

(
A U
0 N

)
is isomorphic over

Z to

(
A U ′

0 N1

)
. Since N1 has zero on and below the diagonal, it is easy to check that(

A U ′

0 N1

)
can be obtained from A by a sequence of right zero extensions. �
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Interesting Problem: The spectral radius λA of A determines the entropy of the
SFT (XA, σA). What is a dynamical interpretation of the other eigenvalues of A? There
is an idea of what this might be, related to signed measures, and signed traces, which
will be mentioned later. To summarize, the other eigenvalues should give information
regarding the error rates in the convergence to the entropy in its limit definition.


