PROBLEM SET 3

Choose half of the problems to submit.

Problem 1: Let (X, T) be a system and $Y \subset X$ a T-invariant compact subset. Recall Y is called locally maximal (or isolated) if there exists an open neighborhood V of Y such that

$$
Y=\cap_{n \in \mathbb{Z}} T^{n}(V)
$$

Show that a subshift (Z, σ) which is locally maximal in a full shift must be a shift of finite type, and conversely, any shift of finite type may be realized as a locally maximal invariant set in a full shift.

Problem 2: Show that if $\left(X_{A}, \sigma_{A}\right)$ is an irreducible shift of finite type with positive entropy and $Y \subset X$ is a proper subshift, then the entropy of (Y, σ) is strictly less than the entropy of σ_{A}.

Problem 3: For each of the following pairs of matrices, determine whether they are shift equivalent over \mathbb{Z}_{+}:
(1) $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}3 & 4 \\ 1 & 1\end{array}\right)$.
(2) $A=\left(\begin{array}{ll}3 & 5 \\ 2 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right)$.

Problem 4: Compute the dimension groups for $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right)$.

Problem 5: Show that the dimension groups associated to $\left(\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right)$ and $\left(\begin{array}{ll}2 & 1 \\ 0 & 5\end{array}\right)$ are not isomorphic.

Problem 6: Suppose A is a square \mathbb{Z}_{+}-matrix and $\operatorname{det}(I-t A)=1-n t$ where n is some positive integer. Prove that $\left(X_{A}, \sigma_{A}^{k}\right)$ is topologically conjugate to a full shift for all sufficiently large k.

Problem 7: Let A be an irreducible square \mathbb{Z}_{+}-matrix and recall the construction of the dimension group $\left(D_{A}, \delta_{A}\right)$ in terms of rays and beams given in class. A continuous map $\left(X_{A}, \sigma_{A}\right) \xrightarrow{\pi}\left(X_{B}, \sigma_{B}\right)$ is called u-bijective if for any
$x \in X_{A}, \pi$ restricted to $W^{u}(x)=\left\{y \in X_{A} \mid y_{(-\infty, n]}=x_{(-\infty, n]}\right.$ for some $\left.n\right\}$ maps bijectively onto $W^{u}(\pi(x))$ in X_{B}. Show that if $\pi:\left(X_{A}, \sigma_{A}\right) \rightarrow\left(X_{B}, \sigma_{B}\right)$ is u-bijective, then it induces a well-defined homomorphism between the dimension groups $\pi_{*}:\left(D_{A}, \delta_{A}\right) \rightarrow\left(D_{B}, \delta_{B}\right)$, and hence the dimension group is functorial with respect to u-bijective maps.

Problem 8: Let $\left(\Sigma_{n}, \hat{T}_{n}\right)$ be the n-adic solenoid constructed in class. Let $\mathbb{Z}_{(n)}$ denote the n-adic integers; that is, $\mathbb{Z}_{(n)}$ is the inverse limit of the system

$$
\mathbb{Z} / n \stackrel{\bmod n}{\leftarrow} \mathbb{Z} / n^{2} \stackrel{\bmod n^{2}}{\leftrightarrows} \mathbb{Z} / n^{3} \stackrel{\bmod n^{3}}{\leftarrow} \cdots .
$$

Recall the suspension of a system (X, T) is the topological space defined by $(X \times[0,1]) / \sim$ where $(x, 1) \sim(T(x), 0)$. Show that the suspension of the n-adic integers is homeomorphic to the n-adic solenoid.

Bonus problem: Show that $A=\left(\begin{array}{cc}19 & 5 \\ 4 & 1\end{array}\right)$ is not shift equivalent to its transpose, and conclude that $\left(X_{A}, \sigma_{A}\right)$ is not topologically conjugate to its inverse $\left(X_{A}, \sigma_{A}^{-1}\right)$.

